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BMPs WY2017 STA Performance SFWMD 2018

Overall'sucé8sstul | o
Approx. 50% long term-average -
load reduction from EAA Basin

Exceeding the 25% required by law
(Daroub et al. 2009)
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Total inflow (x108 ac-ft) 1.1
TP FWM (inflow/outflow) (ug/L) 96/15
TP load (inflow/outflow) (t) 129/20
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Reduction % (FWM, Load) (84%, 84%)

g Estimates (SFWIMD) suggest approx. 50%
o of STA outflow TP is Particulate-P (PP).




Overview of STA Conceptual Ecological Model (srwmpy
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CEM Components -
Particulates Study

s1.
DIP,DOP
PIP, POP

. rauli F8. Settling/ Accretion & ‘
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(PIP, POP)

Task 2 — flow paths
Task 3 — settling
Task 4 —erosion

Task 5 — hydro-met monitor
(mechanistic modeling)
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How fast do STA-derlved

What is the background ¢

What velocities or shear stress are req ir
(b) to allow deposmon’?

hydrologic and meteorological conditions that resuspend partcheS’P




Study Areas:
= STA2 Cell3 & STA3 /4 Cell 3
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Paths and Velocities

* Preferential flow path

— Field measurement of 3D velocity
%ol — Continuous monitoring of velocity
~ |« Micro-topography

— Floc thickness, water depth

— Field survey and satellite derived data =
* Flow scenarios

— Field measurement under Low and

High flow conditions B
 Inflow/Outflow Structures | ',/ R

— analysis of inflow and outflow pattern g ey

 Meteorological Factors
— Data from ROTNWX weather station s
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Flow and Stage, 2016

STA2

e Event 2: (Q_inf ~ 8m3/sec)

e Event 1:(Q_inf~ 4m?3/sec)

-> stagnant - Missed the normal flow

— High flow

— The outflow discharge was greater than the inflow

STA2 Cell3 flow rate and stage at the inflow (G333%) and Outflow (G334}, 2016

— Low -> stagnant -> normal
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« High flow velocity along remnant canals
Flow vectors . _ocalized preferential flow path

@Outflow -« Low SNR due to clear water
* Thicker floc bed compared to inflow and midflow cells
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Distance from South Levee, m
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be rS Video: https://1drv.ms/v/s!At0z18n5P pgnGIFXNF5NVrAnU2s
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Gust Cham

Surface critical shear stresses were similar

| for all sites, ranging from 0.1 to 0.3 Pa.
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Eroded Mass is a proxy for depth. Usually —=
only the first few surface millimeters are Total eroded mass at the end of the 0.45
eroded, with the exception of two of the mid  Pa step greater (ns) erosion at midflow
site cores which eroded a few centimeters than the other sites.



https://urldefense.proofpoint.com/v2/url?u=https-3A__1drv.ms_v_s-21AtOz18n5P-5FpqnGlFxNF5NVrAnU2s&d=AwMFAg&c=1QsCMERiq7JOmEnKpsSyjg&r=QLx7fSxYkA3yVsfoE7NeDQ&m=FsOwCsrmjttNZM6quij8l6FKXv5yM0Zn2NGrt6iQI2Y&s=GgEd1De3MjkY1tO2srEZKYJvxwyvUB_GdQNJwJ6KpHU&e=

I A S2MC1S -
SEDFLUME -Erosion L ]
, E =At"
* 1-5 mm eroded per step carr P .
« Each step 20 s — 10 m duration i S |
= 1,00, N=1J,;g;f»" ot il 3
— ft.;;/;f/”,’ P E
§ 107 I AR i 4 5 2
l.l-_..l e /,// o i E=p." E’
5 o - A= 0392 i
- 3 - v n=387
re g i 4 s = 0.12Pa ’
104 F - —’,—”— - - _"I__. et = 0.85, N=15
; <= 2
{ \ Critical Erosion
Tnstsﬂﬁﬁnn o 1
10° : - ' , , i . . '
| 107! 10°
Estimated t, - [Pal

» Surface sediments have critical stress
generally <0.1 Pa. Median value: 0.06 Pa.

» Erosion resistance increases with depth.
Median critical stress >3 cm is 0.14 Pa.

\ » Replicate cores at each location were
Pump.\ Bypass Vave consistent in results.

Serew Jack




Meteorological Effects

Current and suspended
sediment conc.(SS) followed a
diurnal pattern driven by peak
afternoon winds.

Both Turbulent Kinetic Energy
(TKE) and Reynolds shear
stress peak a few hours later.
Echo Amplitude from the ADV
provides a proxy for SS.
Concentrations peak around
the same time as maximum
TKE and shear stress, but
requires time for particles to
settle out of the water column.
Minimum concentrations are
around 7-8 AM.
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Conclusions

Decreasing sediment TP conc. and increasing Ash content from Inflow to Outflow.
Remnant canals, microtopography, proximity to outflows, and operations effect
preferential flow patterns.

Relatively higher critical shear stress at surface of sediment than shear stresses
exerted by the water column.

Diurnal variability of water column suspended sediment concentration
Measurements of bottom critical shear stresses for erosion made with the Gust
and SedFlume instruments showed no significant difference between sites and
critical shear stresses ranged about 2 orders of magnitude greater than that
measured in the water column! The dense lutocline creates a turbulent damping
mechanism that makes it difficult to resuspend sediment from the bottom.
Suspended sediment concentration peaks in the water column were likely due to
wave turbulence resuspended material from aquatic vegetation leaves and stems.
Size and abundance of particles increases downstream.

Most particulate flux is from recently deposited material upon leaves of aquatic
vegetation that is easily resuspended during wind driven turbulence.
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